Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.24.22282675

ABSTRACT

Background Dog-mediated rabies is endemic across Africa causing thousands of human deaths annually. A One Health approach to rabies is advocated, comprising emergency post-exposure vaccination of bite victims and mass dog vaccination to break the transmission cycle. However, the impacts and cost-effectiveness of these components are difficult to disentangle. Methods We combined contact tracing with whole-genome sequencing to track rabies transmission in the animal reservoir and spillover risk to humans from 2010-2020, investigating how the components of a One Health approach reduced the disease burden and eliminated rabies from Pemba island, Tanzania. With the resulting high-resolution spatiotemporal and genomic data we inferred transmission chains, estimated case detection and quantified the public health burden to evaluate these interventions. Results We resolved five transmission chains co-circulating on Pemba from 2010 that were all eliminated by May 2014. During this period, rabid dogs, human rabies exposures and deaths all progressively declined following initiation and improved implementation of annual islandwide dog vaccination. We identified two introductions to Pemba in late 2016 that seeded re-emergence after dog vaccination had lapsed. The ensuing outbreak was eliminated in October 2018 through reinstated islandwide dog vaccination. While post-exposure vaccines were highly cost-effective ($405 per death averted), their accessibility was limited and only dog vaccination interrupted transmission. A combined One Health approach rapidly eliminated rabies, was highly cost-effective ($1865 per death averted) and saved 20-120 families from rabid dog bites annually. Conclusions A One Health approach underpinned by dog vaccination is an efficient, cost-effective, equitable and feasible approach to rabies elimination, but needs scaling up across connected populations to sustain the benefits of elimination, as seen on Pemba, and for similar progress to be achieved elsewhere. Funding Wellcome [207569/Z/17/Z, 095787/Z/11/Z, 103270/Z/13/Z], the UBS Optimus Foundation, and the DELTAS Africa Initiative [Afrique One-ASPIRE/DEL-15-008] comprising a donor consortium of the African Academy of Sciences (AAS), Alliance for Accelerating Excellence in Science in Africa (AESA), the New Partnership for Africa’s Development Planning and Coordinating (NEPAD) Agency, Wellcome [107753/A/15/Z] and the UK government. The rabies elimination demonstration project from 2010-2015 was supported by the Bill & Melinda Gates Foundation (OPP49679) and whole-genome sequencing was partially supported at APHA by Defra grant SE0421.

2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.19.21255673

ABSTRACT

Background: Non-pharmaceutical interventions (NPIs) used to limit SARS-CoV-2 transmission vary in their feasibility, appropriateness and effectiveness in different contexts. In Bangladesh a national lockdown implemented after the first detected case in early March 2020 rapidly exacerbated poverty and was considered untenable long-term, whilst surging cases in 2021 warrant renewed NPIs. We examine potential outcomes and costs of NPIs considered appropriate and feasible to deploy in Dhaka over the course of the pandemic including challenges of compliance and scale up. Methods: We developed an SEIR model for application to Dhaka District, parameterised from literature values and calibrated to death data from Bangladesh. We discussed scenarios and parameterizations with policymakers using an interactive app, to guide modelling of lockdown and post-lockdown measures considered feasible to deliver; symptoms-based household quarantining and compulsory mask-wearing. We examined how testing capacity affects case detection and compared deaths, hospitalisations relative to capacity, working days lost from illness and NPI compliance, and cost-effectiveness. Results: Lockdowns alone were predicted to delay the first epidemic peak but were unable to prevent overwhelming of the health service and were extremely costly. Predicted impacts of post-lockdown interventions depended on their reach within communities and levels of compliance: symptoms-based household quarantining alone was unable to prevent hospitalisations exceeding capacity whilst mask-wearing could prevent overwhelming health services and be cost-effective given masks of high filtration efficiency. The modelled combination of these measures was most effective at preventing excess hospitalizations for both medium and high filtration efficiency masks. Even at maximum testing capacity, confirmed cases far underestimate total cases, with saturation limiting reliability for assessing trends. Recalibration to surging cases in 2021 suggests limited immunity from previous infections and the need to re-sensitize communities to increase mask wearing. Conclusions: Masks and symptoms-based household quarantining act synergistically to prevent transmission, and are cost-effective in mitigating impacts. Our interactive app was valuable in supporting decision-making in Bangladesh, where mask-wearing was mandated early, and community teams have been deployed to support household quarantining across Dhaka. This combination of measures likely contributed to averting the worst impacts of a public health disaster as predicted under an unmitigated epidemic, but delivering an effective response at scale has been challenging. Moreover, lack of protection to the B.1.351 variant means messaging to improve mask-wearing is urgently needed in response to surging cases.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL